49 research outputs found

    A Characterisation of Medial as Rewriting Rule

    Get PDF
    International audienceMedial is an inference rule scheme that appears in various deductive systems based on deep inference. In this paper we investigate the properties of medial as rewriting rule independently from logic. We present a graph theoretical criterion for checking whether there exists a medial rewriting path between two formulas. Finally, we return to logic and apply our criterion for giving a combinatorial proof for a decomposition theorem, i.e., proof theoretical statement about syntax

    From Proof Nets to the Free *-Autonomous Category

    Get PDF
    In the first part of this paper we present a theory of proof nets for full multiplicative linear logic, including the two units. It naturally extends the well-known theory of unit-free multiplicative proof nets. A linking is no longer a set of axiom links but a tree in which the axiom links are subtrees. These trees will be identified according to an equivalence relation based on a simple form of graph rewriting. We show the standard results of sequentialization and strong normalization of cut elimination. In the second part of the paper we show that the identifications enforced on proofs are such that the class of two-conclusion proof nets defines the free *-autonomous category.Comment: LaTeX, 44 pages, final version for LMCS; v2: updated bibliograph

    On Nested Sequents for Constructive Modal Logics

    Get PDF
    We present deductive systems for various modal logics that can be obtained from the constructive variant of the normal modal logic CK by adding combinations of the axioms d, t, b, 4, and 5. This includes the constructive variants of the standard modal logics K4, S4, and S5. We use for our presentation the formalism of nested sequents and give a syntactic proof of cut elimination.Comment: 33 page

    Non-crossing tree realizations of ordered degree sequences

    No full text
    We investigate the enumeration of non-crossing tree realizations of integer sequences, and we consider a special case in four parameters, that can be seen as a four-dimensional tetrahedron that generalizes Pascal's triangle and the Catalan numbers

    A System of Interaction and Structure IV: The Exponentials and Decomposition

    Get PDF
    We study a system, called NEL, which is the mixed commutative/non-commutative linear logic BV augmented with linear logic's exponentials. Equivalently, NEL is MELL augmented with the non-commutative self-dual connective seq. In this paper, we show a basic compositionality property of NEL, which we call decomposition. This result leads to a cut-elimination theorem, which is proved in the next paper of this series. To control the induction measure for the theorem, we rely on a novel technique that extracts from NEL proofs the structure of exponentials, into what we call !-?-Flow-Graphs

    No complete linear term rewriting system for propositional logic

    Get PDF
    International audienceRecently it has been observed that the set of all sound linear inference rules in propositional logic is already coNP-complete, i.e. that every Boolean tautology can be written as a (left-and right-) linear rewrite rule. This raises the question of whether there is a rewriting system on linear terms of propositional logic that is sound and complete for the set of all such rewrite rules. We show in this paper that, as long as reduction steps are polynomial-time decidable, such a rewriting system does not exist unless coNP = NP. We draw tools and concepts from term rewriting, Boolean function theory and graph theory in order to access the required intermediate results. At the same time we make several connections between these areas that, to our knowledge, have not yet been presented and constitute a rich theoretical framework for reasoning about linear TRSs for propositional logic. 1998 ACM Subject Classification F.4 Mathematical Logic and Formal Language

    On linear rewriting systems for Boolean logic and some applications to proof theory

    Get PDF
    Linear rules have played an increasing role in structural proof theory in recent years. It has been observed that the set of all sound linear inference rules in Boolean logic is already coNP-complete, i.e. that every Boolean tautology can be written as a (left- and right-)linear rewrite rule. In this paper we study properties of systems consisting only of linear inferences. Our main result is that the length of any 'nontrivial' derivation in such a system is bound by a polynomial. As a consequence there is no polynomial-time decidable sound and complete system of linear inferences, unless coNP=NP. We draw tools and concepts from term rewriting, Boolean function theory and graph theory in order to access some required intermediate results. At the same time we make several connections between these areas that, to our knowledge, have not yet been presented and constitute a rich theoretical framework for reasoning about linear TRSs for Boolean logic.Comment: 27 pages, 3 figures, special issue of RTA 201

    On the Axiomatisation of Boolean Categories with and without Medial

    Get PDF
    In its most general meaning, a Boolean category is to categories what a Boolean algebra is to posets. In a more specific meaning a Boolean category should provide the abstract algebraic structure underlying the proofs in Boolean Logic, in the same sense as a Cartesian closed category captures the proofs in intuitionistic logic and a *-autonomous category captures the proofs in linear logic. However, recent work has shown that there is no canonical axiomatisation of a Boolean category. In this work, we will see a series (with increasing strength) of possible such axiomatisations, all based on the notion of *-autonomous category. We will particularly focus on the medial map, which has its origin in an inference rule in KS, a cut-free deductive system for Boolean logic in the calculus of structures. Finally, we will present a category proof nets as a particularly well-behaved example of a Boolean category

    A Characterisation of Medial as Rewriting Rule

    Get PDF
    International audienceMedial is an inference rule scheme that appears in various deductive systems based on deep inference. In this paper we investigate the properties of medial as rewriting rule independently from logic. We present a graph theoretical criterion for checking whether there exists a medial rewriting path between two formulas. Finally, we return to logic and apply our criterion for giving a combinatorial proof for a decomposition theorem, i.e., proof theoretical statement about syntax

    What is a logic, and what is a proof ?

    Get PDF
    International audienceI will discuss the two problems of how to define identity between logics and how to define identity between proofs. For the identity of logics, I propose to simply use the notion of preorder equivalence. This might be considered to be folklore, but is exactly what is needed from the viewpoint of the problem of the identity of proofs: If the proofs are considered to be part of the logic, then preorder equivalence becomes equivalence of categories, whose arrows are the proofs. For identifying these, the concept of proof nets is discussed
    corecore